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Unconditionally Stable Tracking
Discriminator at 35 GHz
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Abstract—A two-mode tuning method for injection locked os-
cillators at microwave frequencies has been presented. This tech-
nique allows one to modify the frequency response characteristics
and stability boundary of an injection locked oscillator (ILO) in
a favorable direction. Using this idea, a lock-in microwave dis-
criminator has been proposed. The stability properties, tracking
zone and other characteristics of the discriminator are presented
based on both a mathematical analysis and experimental results.

1. INTRODUCTION

UITE a few activities in recent times have been ob-

served in the area of microwave and mm-wave Systems

with particular emphasis on the realization of tracking
receivers used in radars or other short range communication
systems. Since there exists an atmospheric window of em
waves at 35 GHz, transmitters and receivers are often designed
at this frequency. So far as detection at this frequency-band
is concerned, it is a standard practice to use a phase locked
demodulator, as shown in Fig. 1(a), incorporating harmonic
mixer and i.f. stages which introduce a time-delay in the
system. The appearance of the time delay not only introduces
distortion in the discriminator output but also causes the
system to become susceptible to false or spurious locking.
In view of this it is advisable to use an injection locked
FM demodulator (Fig. 1(b}). Due to its circuit simplicity an
injection locked FM discriminator does not have this false
locking problem, but it is not unconditionally stable. The
serious problem with the conventional injection locked mm-
wave discriminator is its incapability of detecting a signal
below a certain level because at low levels of input signal, the
system becomes unstable. Therefore, in order to improve upon
this, i.e.. to enhance detection efficiency, we propose a novel
injection locked detection technique which is easily realizable
by introducing two modes of tuning the local oscillator. This
is explained in the following sections.

II. SYSTEM CONFIGURATION

The proposed system configuration is shown block diagra-
matically in Fig. 1(c). It consists of a waveguide tuned Gunn
oscillator the free-running frequency of which is 34.8 GHz
with an output power of 175 mW. It is injection synchronized
with the input signal, frequency modulated by the information
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Fig. I. (a) Block diagram of Phase Locked Discriminator. (b) Block diagram
of Injection Locked Discriminator (ILD). (c) Schematic diagram of Varactor
Tuned Injection Locked Discriminator (VTILD).

signal. The output of the oscillator is amplitude detected to
recover the information. A fraction of the output is used to
control the free-running frequency of the injection synchro-
nized Gunn oscillator through varactor tuning. We call this
arrangement as the Voltage Controlled Injection Locked Os-
cillator (VCILO). It may be recalled that use of a synchronous
oscillator as a discriminator is often recommended because of
its wide tracking bandwidth, excellent filtering property for
noise rejection, fast acquisition, large amplification and high
sensitivity to recover the signal buried in noise [1]-[3]. But it
is often found that if the relative strength of the input signal
is low the oscillator fails to lock on to the incoming signal
hence detection becomes impossible. The ILO described in
this paper is a unique free-running Gunn oscillator of Van
der Pol type whose natural frequency can be changed and
hence the pull-in range can be increased by means of varactor
tuning, i.e., by means of reactance modulation on application
of a dc voltage across the varactor terminals. Now referring
to the analytical equivalent circuit of the oscillator as shown
in Fig. 2, the governing equation of the system can be written
as:

Pv w, d 3 2
7 + ) —dz(—Clv + C3v°) + wiv
I, .
= ——w,w, sin (w.t — (¢ 1
0 ( (¢) (D
where
f—G Bs
Ci=—r—; (C3=—
1 a 3=
and

Q) is the quality factor of the oscillator
G is the load conductance
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Fig. 2. Equivalent diagram of an Injection Locked Oscillator (ILO).
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w, free-running frequency of the oscillator
w, frequency of the locking signal
6(¢) input modulation

Also note that 3; and (3 are the nonlinear constants of the
device.

The output of the oscillator and the synchronizing signal
are respectively taken as:

v(t) = A(t) cos (wet + (1)) )
and
ig(t) = Is cos (wet — 0(t)) 3)
where
P(t) = P1(t) + a2(t)

(t) Total phase of the locked oscillator with control
11 (t) Phase perturbation that corresponds to the sync. signal
19 (t) Phase perturbation due to varactor control, i.e.,

dip2 _
—Et— = KIUF

where K is the sensitivity of varactor tuning.
Solving (1) with the help of (2) and (3), we obtain the
amplitude and phase equations for the oscillator as:

da w w
=21 — g2 oF
7 2q( a )a+2q cos ¢ )
d¢ w, F . o  df
EZ—Q_E(—I_;SHIQS_KCL +dt (5)
and
Q:wc_w0)¢=0~¢
=0~ 11 — 1
with
A Is
W o Wet
_ 4Cy _9_
A, = (303) and q—C1

Performing computational analysis of (4) and (5) it can be
easily shown that both the amplitude and phase of the os-
cillator are modulated by the modulating signal. Thus the

oscillator performs FM-AM conversion. Now the question
is; how faithful iS the conversion? To answer this, in the
following we obtain the frequency response characteristic of
the synchronized oscillator. In the steady state condition, the
(4) and (5)

%’;1‘1(1 — a%)as + ‘;—;’Fcos bs = 0 (6)
F
Q—‘;—;a—sinqss—ffag:o )
s

where as; and ¢, are respectively the steady state values
of ‘a’ and ‘ ¢’. The modulation signal #(¢) has not been
considered in writing (6) and (7). Defining the normalized
control parameter K; = 2¢K/w, and normalized frequency
detuning A = (2¢/w, )< and combining (6) and (7) we arrive
at

(1+ KD)al - 2(1 + K1A)a?

s

+(1+A%a2-F2=0 ®)

Clearly (8) is a cubic equation in a2 and plot of the positive
real roots of a? give the frequency response curves for the
oscillator for different strengths of the synchronizing signal.
For the positive real roots of a? the entrainment is possible
unless the roots are in the unstable zone. Once again the
stability boundary for the oscillator [4] can be obtained from
(4) and (5) by introducing arbitrarily small perturbations (u, v)
in the oscillator amplitude and phase around its steady state
values, ie.,

a = a, +u

¢ = (]58 +v
Using these in the amplitude and phase equations, it is not
difficult to set up the characteristic equation of the system,

from which the stability condition can be shown to be given
by

al> % )
3(14+ K¥)a? — 4(1 + K1A)a?
+14+A%2>0 (10)

Fig. 3 portrays the frequency response curves of the oscillators
without control (K; = 0), along with the stability boundary.
Here the important thing is that one has to make a suitable
choice of the ratio of the synchronizing amplitude to that of
the oscillator amplitude in relation to the frequency off set so
as to have a linear conversion from FM to AM, as illustrated
in Fig. 3. But when the strength of the synchronizing signal
becomes low, the desired region creeps into the unstabie region
thus making the system unstable and a faithful detection is
not at all possible in that case. Fig. 4 depicts the frequency
response curve and the stability boundary of the varactor
control ILO along with those of an ordinary ILO. Clearly the
plots obtained reveal that not only the response characteristic
for lower strength of the incoming signal becomes linear but
also the unstable region has been pushed aside. So by control-
ling the frequency of the oscillator through varactor tuning,
efficient frequency entrainment of the oscillator is possible
even at very low values of the synchronizing amplitudes,
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Fig. 3. Frequency response characteristics of an Injection Locked Oscillator
along with the stability boundary.
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Fig. 4. Frequency response characteristic and stability boundary of a Voltage
Controlled Injection Locked Oscillator (VCILO) and those of an ordinary ILO.

thus making the system unconditionally stable. Also from
equation (10), we can easily calculate the angle of rotation
of the stability ellipse when a control voltage is applied at the
varactor terminal.

III. FM-AM CONVERSION

Ideal FM-AM conversion is possible only when the signal
is passed through a differentiator. But a differentiator is
known to enhance the noise level at its output. In order
to avoid straight-forwarded differentiation, an ILO can be
conveniently used to realize FM-AM conversion which can
be easily understood from its frequency response characteristic
[5]-[9]. Since an ILO is a tracking device, the noise falling
outside the locking range will be automatically rejected by the
ILO. As a result there will be considerable reduction of noise
compared to an ordinary limiter discriminator. An efficient
FM-AM converter should have high conversion efficiency,
low harmonic distortion and the capability of handling a
large-index FM signal. Minimum harmonic distortion at the
output with the capability of handling a large-index FM signal
demands a wideband linear zone in the frequency response
curve. Injection synchronization alone is not suitable for
this purpose as can be appreciated by referring to Fig. 3.
The proposed discriminator using VCILO has a wide lock
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Fig. 5. Locking Ratio against CNR - Cf (Without and with varactor control)
[Cy =0.1,F = 0.55].

range relative to an ordinary Injection Locked Discriminator
(ILD) (as calculated in the following section and the result
is shown in Fig. 5). Because of the large tracking zone, the
chance of cycle slipping is considerably reduced. Moreover,
because the frequency response characteristics of the varactor
tuned ILO behave almost like an ideal frequency limiter
for large frequency deviation, the FM-AM conversion is
almost negligible due to large frequency deviation, which may
sometimes appear due to the accompanying noise. From (8)
we get

gﬁ _ 20* K1 — 2Aa?
dA "~ 3041+ K?) — 4a2(1 + K1 A) + 1+ A2

For large values of K3, it turns out as

dCL2 ~ 2K1

dA T 3(1+ K2)

which is independent of the frequency detuning (A). Thus it
is seen that varactor control makes the response curve more
linear than that of an ordinary ILO. So the VCILO can be used
as an efficient FM-AM converter for large-index FM signal
with low harmonic distortion.

IV. OSCILLATOR PERFORMANCE IN PRESENCE OF NOISE

The frequency stability of an oscillator is affected in the
presence of noise [10]. An ILO has the property of reducing
the deleterious effect of unwanted disturbances accompanying
the signal i.e. interfering tones and additive noise [4], [11].
But for very low CNR, even ILO fails to track the signal.
Here we shall study the performance of a varactor tuned ILO
in presence of additive Gaussian noise (AGN). Since exact
analysis when the CNR is low, is not possible, we analyze
the behavior of the system in the high CNR case. Thus we
take recourse to the technique of linearization of non-linear
equation [12] remembering that it is not applicable for phase
deviations comparable to /2.
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In presence of AGN the amplitude and phase equations of

the VCILO are given by

da  w, 9
Wo Wo ’I’Ll(t)
+ —F'cos ¢ + 24 C1A, an
d wo F
?1% =fl-c = sin ¢
a2 Yo na(t)
Ka* + 290 .Ole (12)

where n1(t) and ny(t) are independent, Gaussian noise terms
with zero mean. In the present model we consider small phase
and amplitude fluctiiations from the steady state values, i.e.,

a(t) = as + ap(t)7 ¢(t)

Thus the equation for a,(t) and 3(t) are written as (cf. (11)
and (12)) ‘

da w
d—tp = 2—;(1 ~ 3a2)ay
Wo -y . won1(t)
iy .
2" PP 24004,
dg we F
o 2—(1'a—s cos ¢s 03
wo F |
+ (Esa—g sin ¢ — 2Ka5> ap
wong(t)
2quAoas
In Laplace notation (s being the Laplacian operator)
sap = — a11a, — a128 + Ni(s) (13)
50 = az1a, — ag2PB + Na(s) (14)

where
d
dt’
Wo 2
=—(1-3
a1 2q( ay)

§ =

= (—)ve quantity asa? > 0.5

Wo 1 .
aja = ﬁFSln Ps,

F
ag1 = —(‘-)O—Q sin (]53 b 2Kas,
2qa

8
wO

2qa.,
_ WeN1 (S)
T 294,C

_ wena(s)
NE(S) B 2QA001(13

Thus (13) and (14) can be expressed as
- (8 + agg)Nl(S) - algNz(S)
P (s +a11)(s + ag) + a12a91

ﬂ _ alle(s) + (S + all)Ng(s)
(s + a11)(8 + a22) + a12091

agg = cos ¢

Nl(s)

and

Now the amplitude and phase variance are defined as
o0
A / lap|? dw and
i —o0
2 a2
o= [ ipfdw
- OO

Let us define the CNR as A%/N,Aw, where Aw is the
bandwidth of the input bandpass filter and N, is the spectral
density of n1(s) and ny(s). From (15) we get (16) and (17),
which are shown at the bottom of the page, where

Wl
1= 94a,

(15)

To find the locking condition in presence of noise we put the
average value of phase fluctuation to be zero

(%) =10 - gtein g

— K{a®) + (Na(t))

Putting (d¢/dt) = 0 = (Na(t)) and taking the probability
density of amplitude and phase perturbation to be Gaussian
in nature i.e.,

1 a,
P = Ty "0\ "2z,

P(B) = T;r;%,—)e}(p <—£g)

F
, [(Fsin ¢s + a%) (Zg sin ¢y — 2K1as)

+(3aZ - 1) + aE-cos $s(3a2 — 1)

(Q1/Aw)as
4C2CNRF

o5 = 7 — 7 (16)
[Fsin o5 Ez sin ¢ — 2K1as) + o cos s (3a; — 1)] [(30@ -1+ o cos %}
(434 s 8
. F F F 2 (1 /Aw)ay,
, [Fsm ¢s + (a—g sin ¢y — 2K1as) + — + E; cos ¢s(3as — 1)} 40% ONRF .
g =

2
ag

Qp = F
[F sin ¢, (f— sin ¢g — 2K1a5) + aﬁcos bs(3a2 — 1)} [(3@3 -1)+ o cos gbs:l

s
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Fig. 6. Schematic of the low distortion wideband discriminator.

and also putting ¢s + og = 7/2 we get the locking range
expression as

—wOFCOSU
L= % as A

-exp (—05/2) + K (a2 + 03) (17a)
Lock range in absence of noise and without control is
o F
Qon = 22— (17b)
2q a

Then from equation (17a) and (17b) we can define locking
ratio as

L = cos 05 €xXp (—02/2)

SZVVOH
Qs

+ K; f(&? +0o [2;)
A plot of (18) against (CNR - C?) is shown in Fig. 5. Varactor
control of ILO gives much better performance than that of a
simple ILO for lower value of CNR. But excessive control
through varactor tuning is not advisable as it may push the
frequency response characteristics of the oscillator into the
unstable zone.

(18)

V. Low DISTORTION WIDEBAND DISCRIMINATOR

Output of an injection synchronized FM discriminator using
a single Gunn oscillator contains harmonic distortion specially
for a large index FM signal because of the limited linear zone
of the response curve. A scheme has already been developed
[13] for low distortion output. Here we propose a scheme with
better output and wider lock range than that of an ordinary
injection locked discriminator. The proposed scheme has been
shown in Fig. 6. The proposed discriminator has a linear
characteristic and can handle large index FM signal. The
speciality of this scheme is that it can be used at very low level
of synchronization with a better signal to distortion ratio. The
response characteristics of the discriminators are sketched in
Figs. 7 and 8.

VI. EXPERIMENTAL RESULTS AND DISCUSSION

The experimental model of the proposed discriminator has
been designed with a varactor tuned Gunn oscillator, a detector
and an amplifier the entire arrangement for which is given
in Fig. 9. The voltage tunable characteristics of the Gunn
oscillator are shown in Fig. 10. The oscillograph as given
in Fig. 11(a) exhibits the unlocked nature at the output of a
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Fig. 7. Discriminator characteristics of an ordinary ILO with and without

noise using two Gunn diode.
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Fig. 8. Proposed discriminator characteristics in the absence and presence
of noise.
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Fig. 9. Schematic of the experimental set-up.
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conventional injection locked discriminator for a carrier power
of 4.8 dBm when tracking an FM signal. But with the proposed
discriminator a faithful detection is easily possible for a signal
of the same carrier power as above and is demonstrated in
Fig. 11(b). Maximum input deviation against the carrier power
of the proposed system is depicted in Fig. 12 by the solid line,
where as that of the conventional injection locked demodulator
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Fig. 11. Top: Oscillogram of the detected signal at the output of a con-
ventional Injection Locked Discriminator (ILD) for a carrier power of 4.8
dBm (Free-running oscillator power = 22.4 dBm). Bottom: Oscillogram of
the detected information for the same carrier power (Mod. frequency = 30
KHz) at the output of the VTILD.

is shown by the dotted curve in the same figure. It is seen from
the graphs that the proposed discriminator can work faithfully
with a carrier power less than 20 dB compared to that of the
simple injection locked discriminator.
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Fig. 12. Maximum input deviation handling capability against the carrier
power. Solid line represents that of the VTILD and dotted one for conventional
injection locked discriminator (ILD).
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